a neuro-fuzzy graphic object classifier with modified distance measure estimator

نویسندگان

r. a. aliev

b. g. guirimov

r. r. aliev

چکیده

the paper analyses issues leading to errors in graphic object classifiers. thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andneuro-fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and gray-levels. the authors suggest a neurofuzzygraphic object classifier with modified distance measure that gives betterperformance indices than systems based on traditional ordinary and cumulative distancemeasures. simulation has shown that the quality of recognition significantly improveswhen using the suggested method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR

The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...

متن کامل

A Neuro-Fuzzy Classifier and Its Applications

membership in each class. This viewpoint not only reflects the reality of many applications in which categories have fuzzy boundaries, but also Provides a simple representstion of the potentially complex partition of the feature space. In brief, we use fuzzy i fthen rules to describe a ChsSifier. A typical fuzzy classification rule is like: Fuzzy classification is the task of partitioning a fea...

متن کامل

Accuracy-based Neuro And Neuro-fuzzy Classifier Systems

Learning Classifier Systems traditionally use a binary representation with wildcards added to allow for generalizations over the problem encoding. However, the simple scheme can be limiting in complex domains. In this paper we present results from the use of neural network-based representation schemes within the accuracy-based XCS. Here each rule’s condition and action are represented by a smal...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of fuzzy systems

ناشر: university of sistan and baluchestan

ISSN 1735-0654

دوره 1

شماره 1 2004

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023